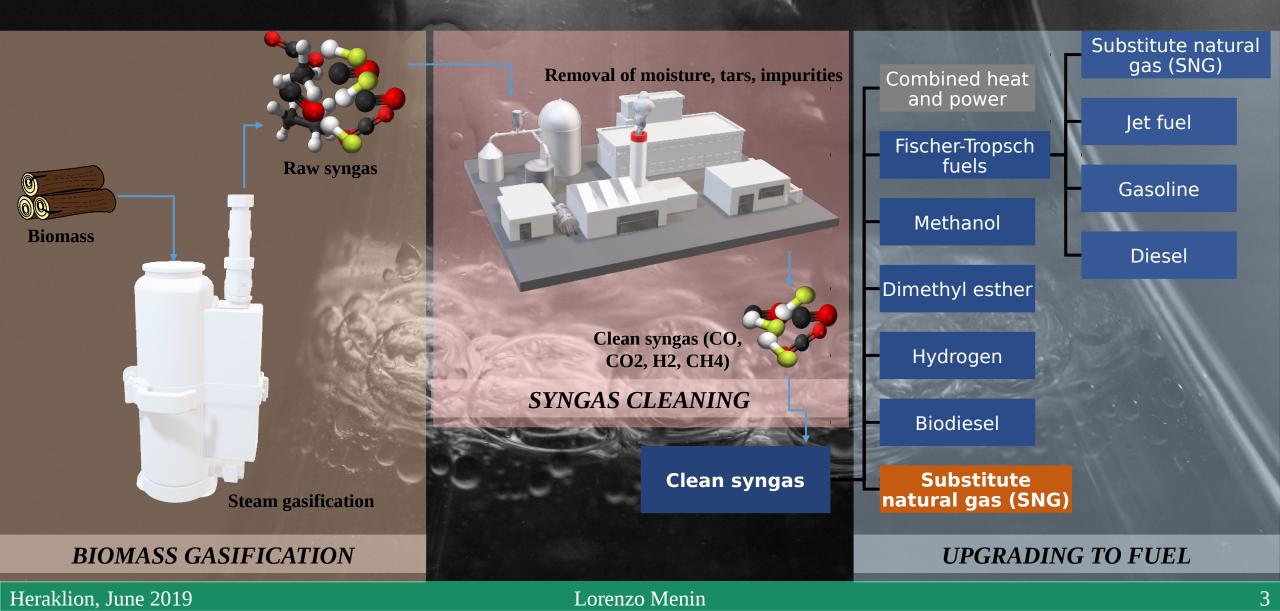


The feasibility of integrating biomass steam gasification and syngas biomethanation to store renewable energy as methane gas

Lorenzo Menin, Stergios Vakalis, Vittoria Benedetti, Francesco Patuzzi, Marco Baratieri

7th International Conference on Sustainable Solid Waste Management HERAK

High-quality fuels from biomass gasification


A glance at future renewable energy systems

- Multiple sectors will require **diverse renewable fuels** and
- Fuels with **high storage capacity** will be required to grant temporal flexibility

Thus, sole **heat and power** production from biomass will not be appropriate: biomass conversion has to shift towards the synthesis of **versatile, storable, transportable fuels**

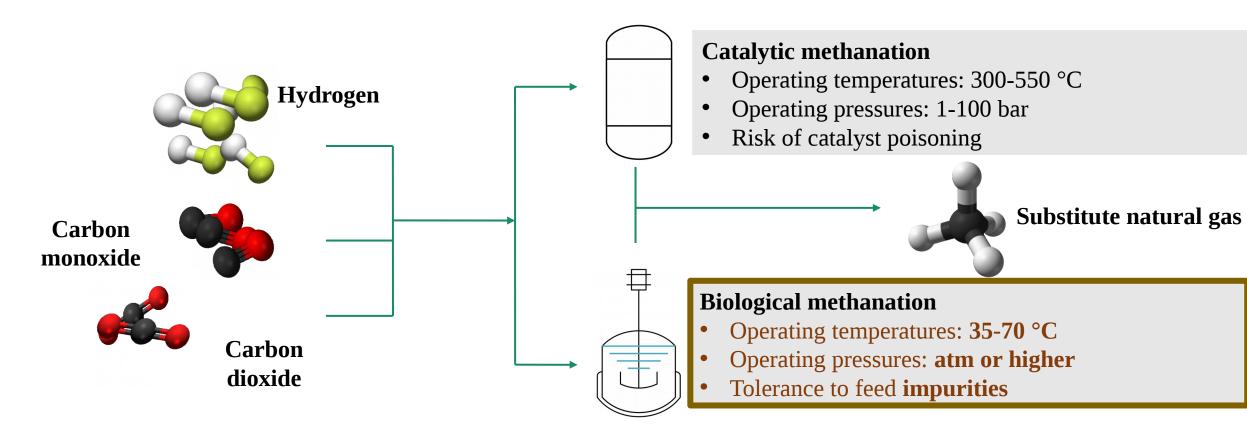
High-quality fuel om biomass gasificati

- High wolumetric energy content : vsHV_{CH4}: 33 MJ/Nm³ vs LHV_{H2}: 10 MJ/Nm³
- Existing transport and storage infrastructure
- Established combustion and conversion technologies across sectors

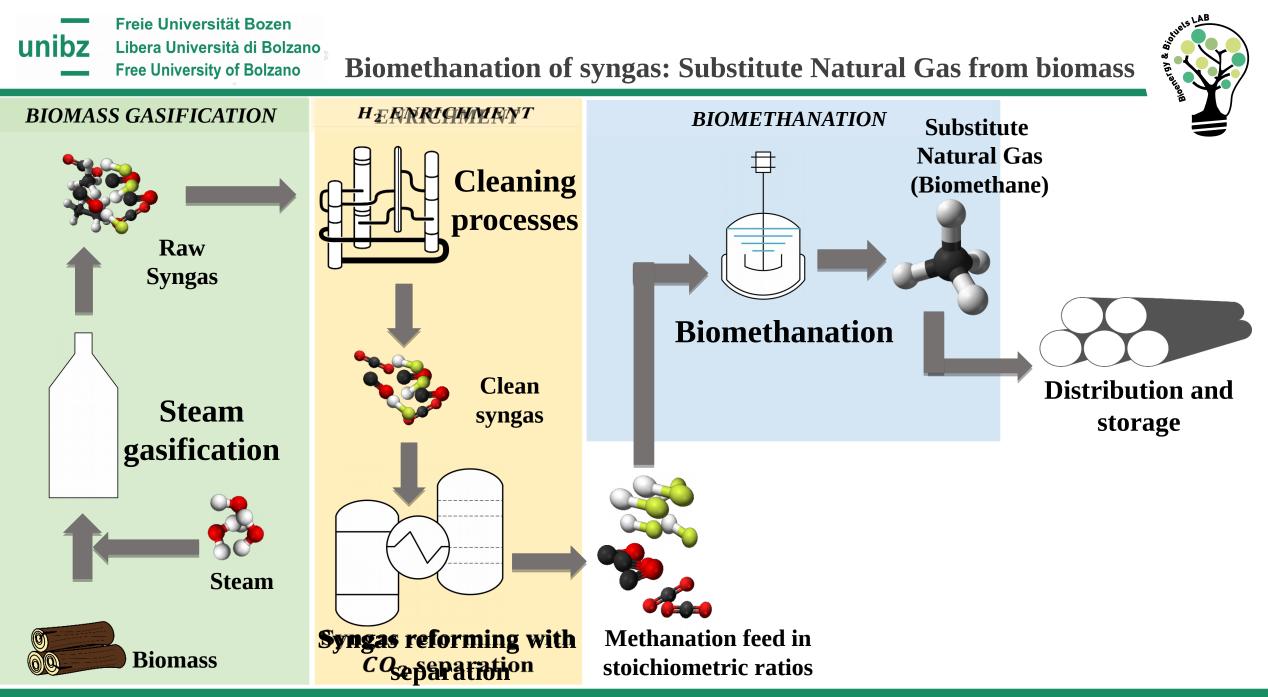
«Natural gas offers many potential benefits [...] given limits to how quickly renewable energy options can **scale up** and that cost-effective zero-carbon options can be **harder to find in some parts of the energy system**. The **flexibility** that natural gas brings to an energy system can also make it a good fit for the rise of **variable renewables** such as wind and solar PV»

Heraklion, June 2019

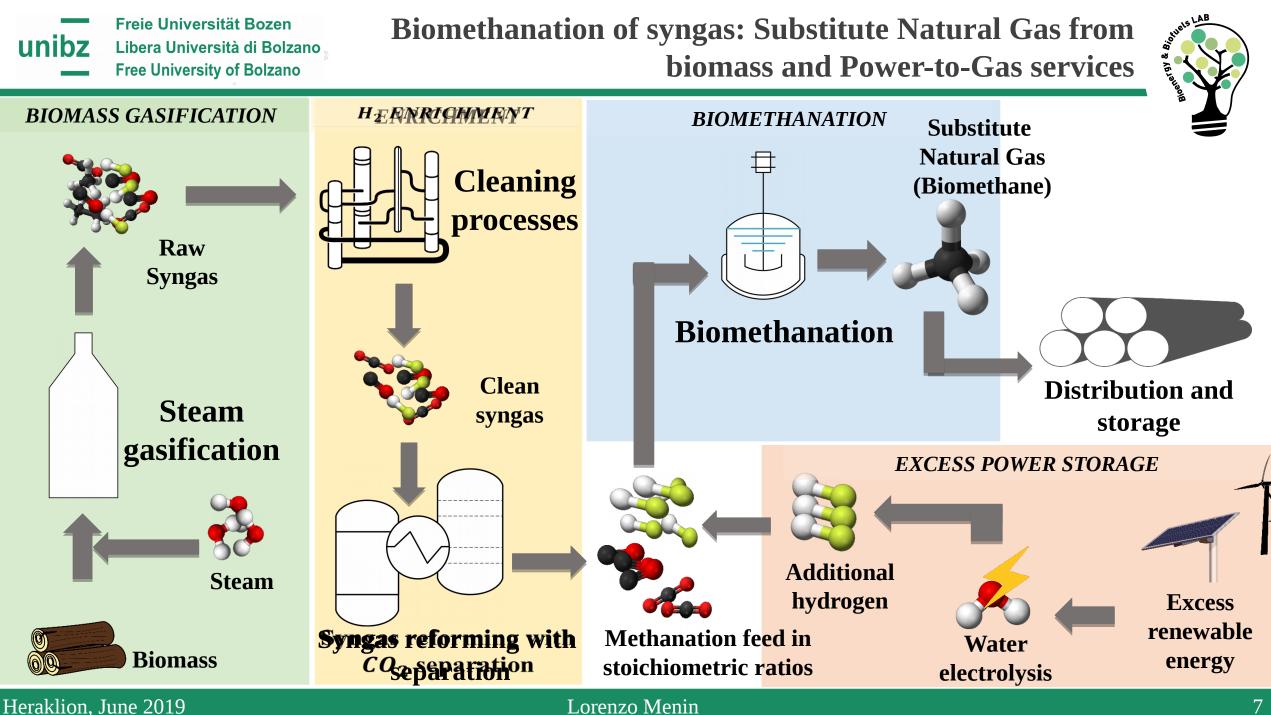
Lorenzo Menin


- International Energy Agency, 2017

Methanation processes



 $\begin{array}{c} CO_2 + 4H_2 \leftrightarrow \boldsymbol{CH_4} + H_2O\\ CO + 3H_2 \leftrightarrow \boldsymbol{CH_4} + H_2O\\ 4\ CO + 2\ H_2O \leftrightarrow \boldsymbol{CH_4} + 3\ CO_2 \end{array}$



CO, CON MEDNICHIQMETRIC BATIOS

CATALYTIC OR BIOLOGICAL METHANATION

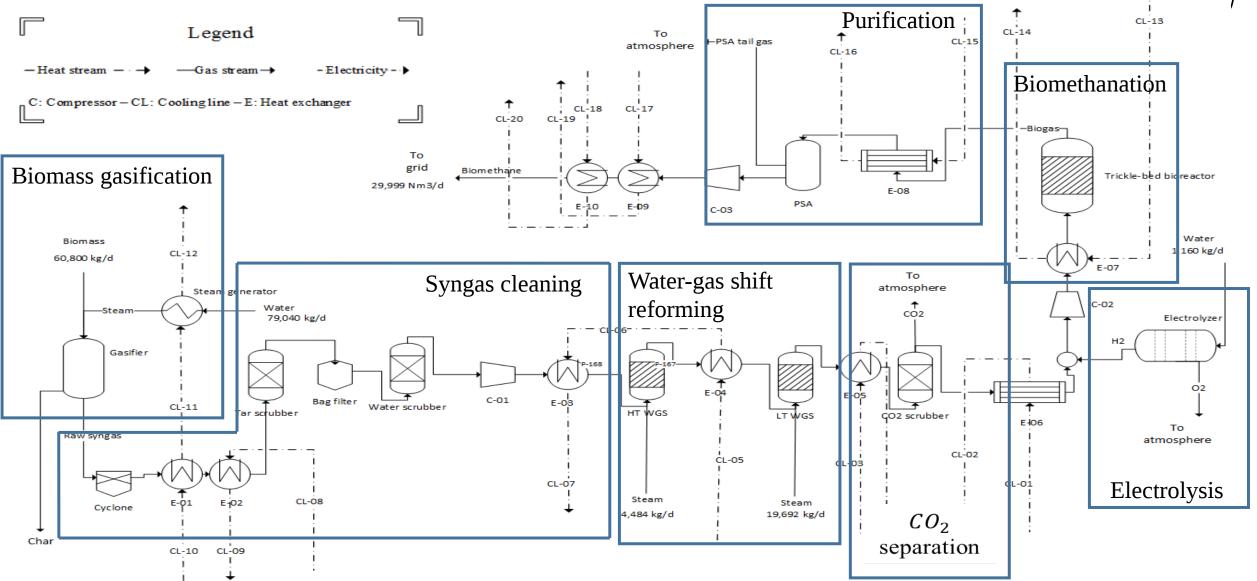
Heraklion, June 2019

Integrating biomass gasification and biomethanation

Key feasibility questions

- **1. Yield of biomethane**?
- **2.** Overall production capacity?
- **3.** Energy efficiency?
- 4. Product **minimum selling price**?
- **5.** Desirability of **biomethane** compared to **hydrogen**?

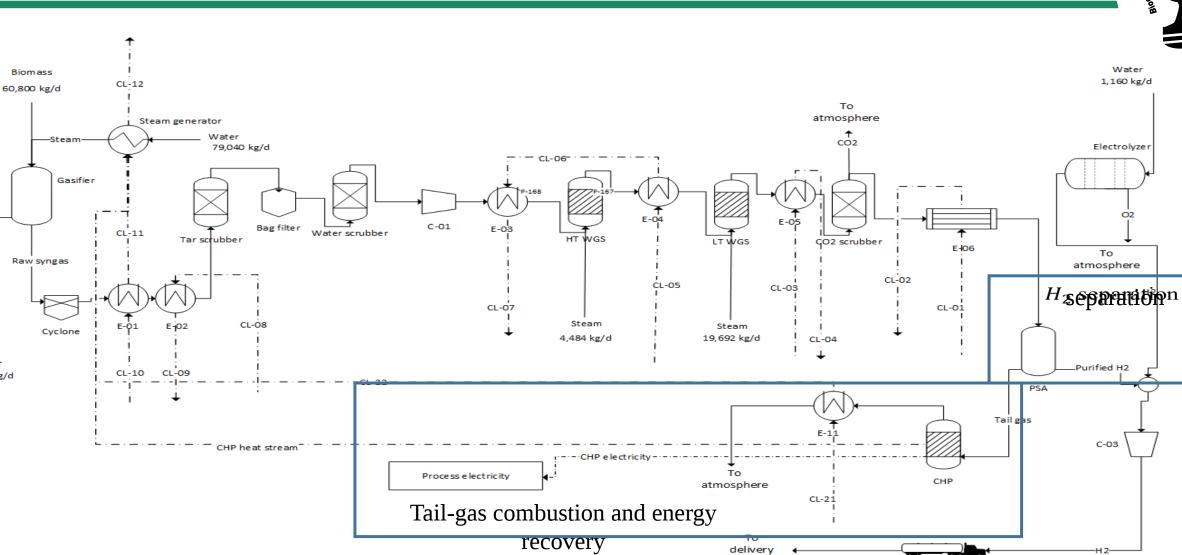
AR IN THE REAL PROPERTY OF THE


Study objectives

Define a **Biomass-to-Biomethane** system (A) and a **Biomass-to-Hydrogen** system (B), both supplemented by **water electrolysis**. And for both systems:

- 1. Estimate the **system mass balance and production capacity**
- 2. Estimate the **system energy balance and efficiency**
- 3. Estimate the **minimum selling price** of the products
- 4. Identify system **optimization requirements**

System A: Biomass-to-Biomethane


Heraklion, June 2019

Lorenzo Menin

10

System B: Biomass-to-Hydrogen

4,037 kg/d

Char

395 kg/d

Lorenzo Menin

els LAB

Process techno-economic parameters

Process section	Parameter	Value	Reference	
Dual fluidized bed gasifier			Ptasinski (2015)	
Alkaline water	Share of excess electricity input	30%	Technical assumption	
electrolysis	Share of grid electricity input	70%		
	Specific electrical consumption	$4.6 \text{ kWh/Nm}^3 \text{ H}_2$	Guillet and Millet (2015)	
Biomethanation	Hydrogen conversion rate	97%	Rachbauer <i>et al</i> . (2016)	
Pressure swing	Methane recovery rate	90%	Augelletti <i>et al.</i> (2017)	
adsorption	Hydrogen recovery rate	85%	Yao <i>et al</i> . (2017)	
Water-gas shift reforming	Low-temperature carbon monoxide conversion rate	47%	Thermodynamic model in Matlab with empirical correlations based on	
	High-temperature carbon monoxide conversion rate	59%	literature data	

Parameter	Value					
General financial assumptions						
Plant lifetime	20 years					
Tax rate	35%					
Discount rate	7%					
Materials, u	tilities, labor					
Biomass cost	100 €/t					
Char disposal cost	150 €/t					
Labor	24.87 €/man-hour					
Natural gas	0.03 €/kWh					
Full-price electricity	0.09 €/kWh					
Surplus renewable electricity	0.05 €/kWh					

System mass balance and production capacity

System ID	Product type	Input			Outŗ	out
		Biomass	Liquid water	Steam	Biomethane	Hydrogen
		kg/day			Nm³/day	kg/day
Α	Biomethane	60,800	60,800 1,160 103,217		26,999	-
В	Hydrogen	60,800	1,160	103,217	-	4,037

Important comparisons

Typical production of European anaerobic digestion biomethane plant: 12,000 - 14,000 Nm³/day of biomethane

Heraklion, June 2019

System mass balance and conversion efficiency

System ID	Product type	Hydrogen utilization	Yield on dry biomass	Yield on carbon or hydrogen
			Nm ³ SNG/kg biomass	mol CH ₄ /mol C
Α	Biomethane	97.5%	0.44	0.45
			kg H ₂ /kg biomass	mol H ₂ /mol H ₂
В	Hydrogen	85.0%	0.07	0.35

Major conversion limitations with respect to carbon (A) and hydrogen (B) inputs

Process A: - canbon losses in 604 bing bing

Process B: - bydrogen losses in PSA tail gas

- steamstermensionalisiontationisatiogasifigasionanidnvandrugetsslgift schorneifogming

- moistune removal

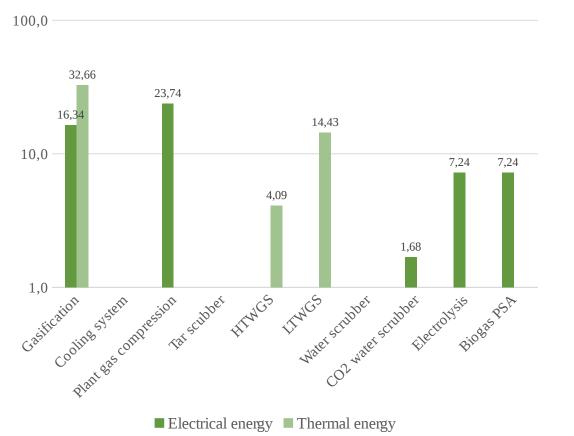
Heraklion, June 2019

System energy balance and efficiency

System ID	Product type		Energy output	Efficiency		
		Biomass	Thermal	Electrical	Product	Cold gas
					LHV	efficiency
				-		
Α	Biomethane	13	2.1	2.3	10.2	58.4%
В	Hydrogen	15	0.8	1.5	5.6	36.6%

Energy recovery from PSA tail-gas combustion in Process B

Electricity: 1.39 MW High-temperature heat: 2.91 MW



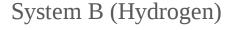
Breakdown of process energy requirements

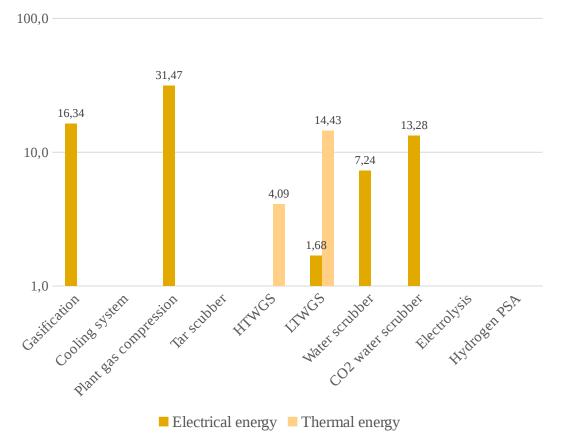
Energy consumption (MWh/day)

Greatest electrical energy requirements

- 1. Gas compression (42%)
- 2. Gasification (29%)
- 3. Pressure Swing Adsorption (13%)

Greatest thermal energy requirements


- 1. Gasification steam (64%)
- 2. Water-gas shift steam (28%)



Breakdown of process energy requirements

Energy consumption (MWh/day)

Greatest electrical energy requirements

- 1. Gas compression (45%)
- 2. Gasification (23%)
- 3. Pressure Swing Adsorption (19%)

Thermal energy requirements

Water-gas shift units are only source of heat demand, thanks to PSA tail-gas combustion and heat integration

Product minimum selling price and current market prices

		Minimum selling price		Current market prices		
System	Product	Product unit	Energy unit	Product description	Product unit price	
				Biomethane from AD of waste and by-products	0.83 €/Nm³	
A	Biomethane	2.37 €/Nm ³				
В	Hydrogen					

⁽¹⁾ Through biomass gasification and CHP production; ⁽²⁾ Before delivery

		Minimum selling price		Current market prices		
System	Product	Product unit	Energy unit	Product description	Product unit price	
				Biomethane from AD of waste and by-products	0.83 €/Nm³	
Α	Biomethane 2.37 €/Nm ³ 0.26 €/Å	0.26 €/kWh	Biomass-derived ⁽¹⁾ renewable electricity	0.16 €/kWh – 0.27 €/kWh		
В	Hydrogen					

⁽¹⁾ Through biomass gasification and CHP production; ⁽²⁾ Before delivery

		Minimum selling price		Current market prices		
System	Product	Product unit	Energy unit	Product description	Product unit price	
				Biomethane from AD of waste and by-products	0.83 €/Nm³	
Α	Biomethane	biomethane 2.37 €/Nm ³	0.26 €/kWh	Biomass-derived ⁽¹⁾ renewable electricity	0.16 €/kWh – 0.27 €/kWh	
В	Hydrogen	15.45 ⁽²⁾ €/kg	0.46 €/kWh			
			(1) T			

⁽¹⁾ Through biomass gasification and CHP production; ⁽²⁾ Before delivery

		Minimum selling price		Current market prices		
System	Product	Product unit	Energy unit	Product description	Product unit price	
				Biomethane from AD of waste and by-products	0.83 €/Nm³	
A Bi	Biomethane	omethane 2.37 €/Nm ³	0.26 €/kWh	Biomass-derived ⁽¹⁾ renewable electricity	0.16 €/kWh – 0.27 €/kWh	
D				Technical grade hydrogen (before delivery)	8.54-10.98 €/kg	
В	Hydrogen	15.45 ⁽²⁾ €/kg	0.46 €/kWh	Technical grade hydrogen (after mid- range delivery)	11 – 13 €/kg	
⁽¹⁾ Through biomass gasification and CHP production; ⁽²⁾ Before delivery						

Heraklion, June 2019

22

Among the two systems analyzed:

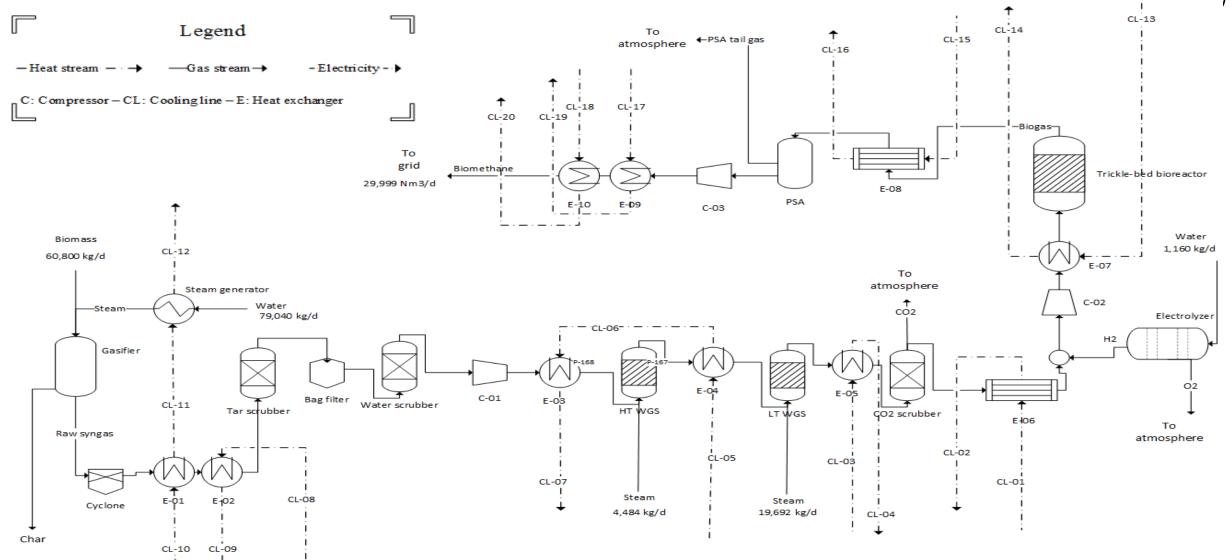
1. Biomass-to-Biomethane (system A) shows

- a) a higher yield on biomass
- b) a more efficient utilization of the hydrogen input
- c) an overall **higher cold gas efficiency production capacity**
- 2. Biomass-to-Hydrogen (system B) offers **better heat integration opportunities**, thanks to PSA tail gas combustion

- **3.** The **renewable energy subsidies** required to make syngas biomethanation feasible are **comparable with those currently in place** for on-site syngas combustion for CHP in Italy
- 4. Biomass-to-Biomethane provides **higher production capacities and lower delivery costs** than hydrogen purification: better option for biomass gasification
- **5.** Key process optimization areas include:
 - **a) Steam-to-hydrogen conversion** in gasification and syngas reforming processes
 - b) Process operation at **lower pressures** to reduce power inputs
 - C) Better **heat integration** in Biomass-to-Biomethane processes

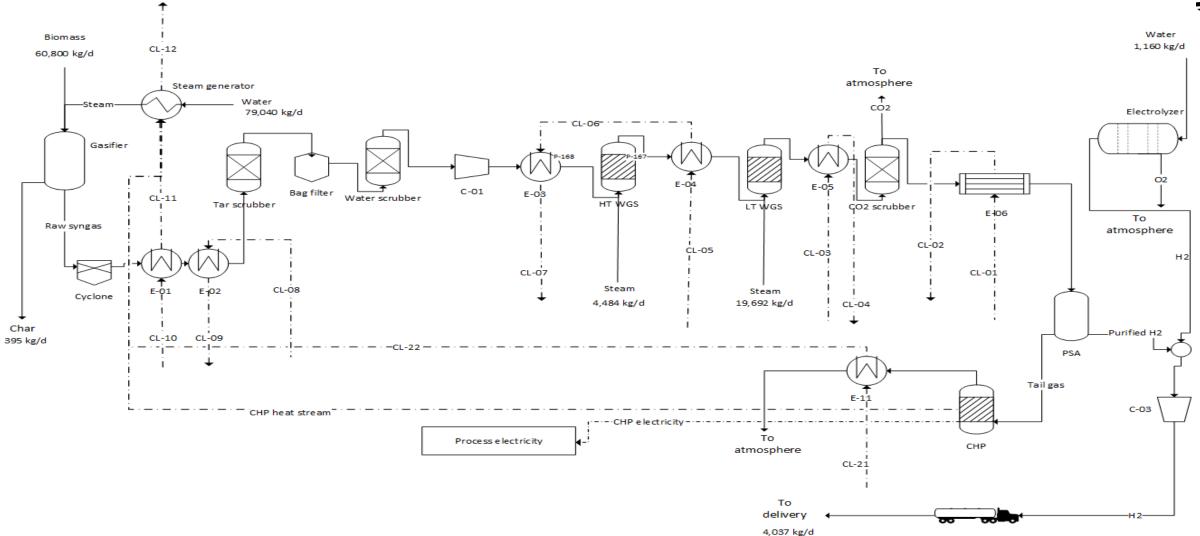
The authors would like to thank a group of industrial professionals for their useful advice:

- Simone Menato (Sebigas)
- Florian Irschara (BTS)
- Alberto Dicorato (Sulzer)
- Massimiliano Coslovich and Marco Possenelli (SIAD)


Thank you

Lorenzo Menin Bioenergy & Biofuels Lab Free University of Bolzano

lorenzo.menin@natec.unibz.it


System A: Biomass-to-Biomethane

System B: Biomass-to-Hydrogen

Heraklion, June 2019

Unibz Freie Universität Bozen Libera Università di Bolzano

Free University of Bolzano Product minimum selling prices in similar systems

This s	This study		Previous studies					
Process	Minimum selling price	Process	Adapted unit prices	Ref.	Notes			
			0.5 €/Nm³	Gassner and Maréchal (2008)				
Biological methanation	2.37 €/Nm³	Catalytic methanation	0.65 €/Nm³	Rivarolo and Massardo (2013)	 Surplus electricity cost: 0.01 €/kWh vs. 0.05 €/kWh Biomass cost 40 €/t vs. 100 €/t 			
Hydrogen purification		Hydrogen	3.71 €/kg	Hulteberg and Karlsson (2009)	Biomass cost 30% of biomass cost in this study			
	15.45 €/kg	purification	3.1 – 3.4 \$/kg	Salkuyeh <i>et al</i> . (2017)	Biomass cost 90% of biomass cost in this study			

Reaction

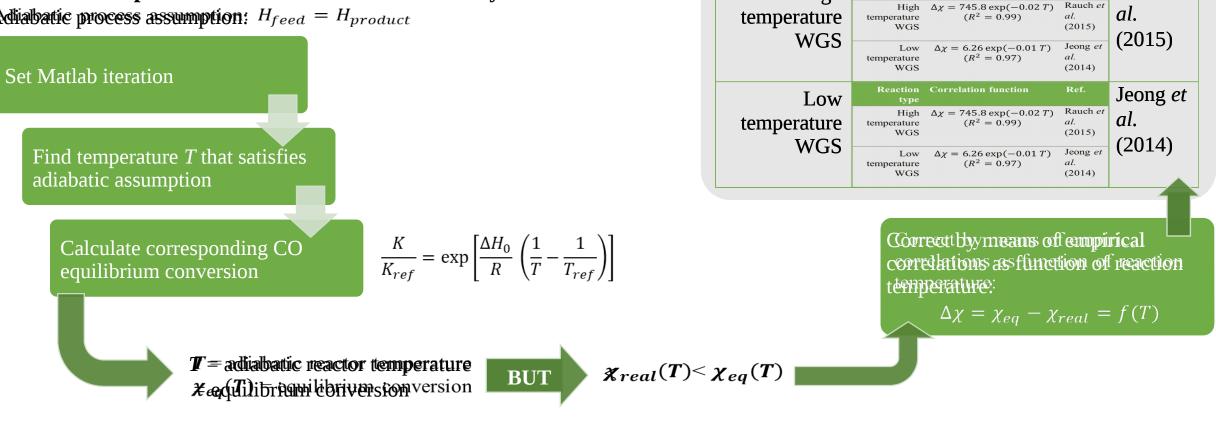
type

High

Correlation function

Reaction Correlation function

Ref.


Rauch et

Modell assumptions:

- Single adiabatic reactors at 15 bar pressure
- Water gas shift is only reaction taking place: $CO + H_2O \leftrightarrow CO_2 + H_2$
- High-temperature WES: 350 °C; Low-temperature WES: 200 °C

Iteration set-up in Matlab with Cantera thermodynamic database

Adiabatic process assumption: $H_{feed} = H_{product}$

Heraklion, June 2019